Essential Python Design Patterns for Clean Code
Design patterns are reusable solutions to common programming problems. Let’s explore some essential patterns in Python and when to use them.
1. Singleton Pattern
Useful for ensuring a class has only one instance:
class Singleton:
_instance = None
def __new__(cls):
if cls._instance is None:
cls._instance = super().__new__(cls)
return cls._instance
def __init__(self):
# Initialize your singleton here
pass
2. Factory Pattern
Create objects without exposing the instantiation logic:
from abc import ABC, abstractmethod
class Animal(ABC):
@abstractmethod
def speak(self):
pass
class Dog(Animal):
def speak(self):
return "Woof!"
class Cat(Animal):
def speak(self):
return "Meow!"
class AnimalFactory:
def create_animal(self, animal_type):
if animal_type == "dog":
return Dog()
elif animal_type == "cat":
return Cat()
raise ValueError(f"Unknown animal type: {animal_type}")
3. Observer Pattern
Implement event handling systems:
class Observable:
def __init__(self):
self._observers = []
self._state = None
def attach(self, observer):
self._observers.append(observer)
def notify(self):
for observer in self._observers:
observer.update(self._state)
@property
def state(self):
return self._state
@state.setter
def state(self, value):
self._state = value
self.notify()
Best Practices
When implementing design patterns:
- Keep it simple
- Don’t over-engineer
- Consider composition over inheritance
- Document your patterns
When to Use Patterns
Choose patterns based on:
- Problem requirements
- Code maintainability
- Team expertise
- Project scale
Remember: patterns are tools, not rules. Use them wisely!